We present a deterministic (global) mincut algorithm for weighted, undirected graphs that runs in $m^{1+o(1)}$ time, answering an open question of Karger from the 1990s. To obtain our result, we de-randomize the construction of the \emph{skeleton} graph in Karger's near-linear time mincut algorithm, which is its only randomized component. In particular, we partially de-randomize the well-known Benczur-Karger graph sparsification technique by random sampling, which we accomplish by the method of pessimistic estimators. Our main technical component is designing an efficient pessimistic estimator to capture the cuts of a graph, which involves harnessing the expander decomposition framework introduced in recent work by Goranci et al. (SODA 2021). As a side-effect, we obtain a structural representation of all approximate mincuts in a graph, which may have future applications.
翻译:我们为加权的、非方向的图表提出了一个确定(全球)分数算法,以美元计时,回答1990年代Karger的未决问题。为了获得我们的结果,我们在Karger的近线时间分数算法(这是它唯一的随机化组成部分)中取消了对计算模型的随机(全球)算法。特别是,我们通过随机抽样将众所周知的Benczur-Karger的图形透析技术部分地解除了随机化,这是我们用悲观估计者的方法完成的。我们的主要技术组成部分正在设计一个高效的悲观估计器,以捕捉图的剪切片,它涉及利用Goranci等人最近工作中引入的扩张器脱形框架(SODA 2021)。作为副作用,我们从一个图表中获得了所有近似微分数的结构性代表,这个图可能在未来得到应用。