We derive nearly tight and non-asymptotic convergence bounds for solutions of entropic semi-discrete optimal transport. These bounds quantify the stability of the dual solutions of the regularized problem (sometimes called Sinkhorn potentials) w.r.t. the regularization parameter, for which we ensure a better than Lipschitz dependence. Such facts may be a first step towards a mathematical justification of annealing or $\eps$-scaling heuristics for the numerical resolution of regularized semi-discrete optimal transport. Our results also entail a non-asymptotic and tight expansion of the difference between the entropic and the unregularized costs.
翻译:我们获得的昆虫半分解最佳运输解决方案几乎是紧凑的、非零星的趋同界限。这些界限量化了正规化问题的双重解决办法(有时称为辛克霍恩潜力)与正规化参数的稳定性,我们为此确保的比利普施茨依赖性要好得多。这些事实或许是朝着对正规化半分解最佳运输的数字解析进行数学解释或以美元衡量的超值主义迈出的第一步。 我们的结果还意味着昆虫与非正规化成本之间的差别的不稳和紧凑的扩大。