We propose \textbf{JAWS}, a series of wrapper methods for distribution-free uncertainty quantification tasks under covariate shift, centered on the core method \textbf{JAW}, the \textbf{JA}ckknife+ \textbf{W}eighted with data-dependent likelihood-ratio weights. JAWS also includes computationally efficient \textbf{A}pproximations of JAW using higher-order influence functions: \textbf{JAWA}. Theoretically, we show that JAW relaxes the jackknife+'s assumption of data exchangeability to achieve the same finite-sample coverage guarantee even under covariate shift. JAWA further approaches the JAW guarantee in the limit of the sample size or the influence function order under common regularity assumptions. Moreover, we propose a general approach to repurposing predictive interval-generating methods and their guarantees to the reverse task: estimating the probability that a prediction is erroneous, based on user-specified error criteria such as a safe or acceptable tolerance threshold around the true label. We then propose \textbf{JAW-E} and \textbf{JAWA-E} as the repurposed proposed methods for this \textbf{E}rror assessment task. Practically, JAWS outperform state-of-the-art predictive inference baselines in a variety of biased real world data sets for interval-generation and error-assessment predictive uncertainty auditing tasks.


翻译:我们提出\ textbf{ JAWS}, 这是一系列包装方法, 用于在可变式转换下分配无不确定性量化任务, 以核心方法为中心 \ textbf{ JA} 以核心方法为核心 \ textbf{ JA} JA} kknife+\ textbf{W} 以数据依赖概率- 鼠标加权数为单位。 JAWS 还包含一个计算高效的计算方法 :\ textbf{ A} 使用更高级影响函数 来重新定位 JAWA 的预测间隔度 。 从理论上看, 我们显示, JAAWA 放松了对数据可交换性的假设, 即使在可变式转换时, 也放松了对数据交换的误差值假设。 JAWA 进一步将JAWA 保证在样本大小的限度或影响函数顺序假设下进行 。 此外, 我们提出一种一般的方法, 重新要求预测预测间隔方法, 保证反任务: 估计预测错误的可能性, 以用户定义错误标准为 JJ 错误标准 A- a a liver liver liver liver liver_ a liver liver_ a a liver liver liver liver ladddd laut a lab a lax a lab a lab a laut a lad a lad a lad a lab a lad a lad a lad a lad a lad a lad a lad a lad a lad ab a lab a lad a lab a lab a lad a lab a lab ab ab a lad a lab a lad a lad a lib a lad ab ab ab a lib ab a lad a lab ab a litical_ a litial_ a lad_ a

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月27日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员