We propose \textbf{JAWS}, a series of wrapper methods for distribution-free uncertainty quantification tasks under covariate shift, centered on the core method \textbf{JAW}, the \textbf{JA}ckknife+ \textbf{W}eighted with data-dependent likelihood-ratio weights. JAWS also includes computationally efficient \textbf{A}pproximations of JAW using higher-order influence functions: \textbf{JAWA}. Theoretically, we show that JAW relaxes the jackknife+'s assumption of data exchangeability to achieve the same finite-sample coverage guarantee even under covariate shift. JAWA further approaches the JAW guarantee in the limit of the sample size or the influence function order under common regularity assumptions. Moreover, we propose a general approach to repurposing predictive interval-generating methods and their guarantees to the reverse task: estimating the probability that a prediction is erroneous, based on user-specified error criteria such as a safe or acceptable tolerance threshold around the true label. We then propose \textbf{JAW-E} and \textbf{JAWA-E} as the repurposed proposed methods for this \textbf{E}rror assessment task. Practically, JAWS outperform state-of-the-art predictive inference baselines in a variety of biased real world data sets for interval-generation and error-assessment predictive uncertainty auditing tasks.
翻译:我们提出\ textbf{ JAWS}, 这是一系列包装方法, 用于在可变式转换下分配无不确定性量化任务, 以核心方法为中心 \ textbf{ JA} 以核心方法为核心 \ textbf{ JA} JA} kknife+\ textbf{W} 以数据依赖概率- 鼠标加权数为单位。 JAWS 还包含一个计算高效的计算方法 :\ textbf{ A} 使用更高级影响函数 来重新定位 JAWA 的预测间隔度 。 从理论上看, 我们显示, JAAWA 放松了对数据可交换性的假设, 即使在可变式转换时, 也放松了对数据交换的误差值假设。 JAWA 进一步将JAWA 保证在样本大小的限度或影响函数顺序假设下进行 。 此外, 我们提出一种一般的方法, 重新要求预测预测间隔方法, 保证反任务: 估计预测错误的可能性, 以用户定义错误标准为 JJ 错误标准 A- a a liver liver liver liver liver_ a liver liver_ a a liver liver liver liver ladddd laut a lab a lax a lab a lab a laut a lad a lad a lad a lab a lad a lad a lad a lad a lad a lad a lad a lad a lad ab a lab a lad a lab a lab a lad a lab a lab ab ab a lad a lab a lad a lad a lib a lad ab ab ab a lib ab a lad a lab ab a litical_ a litial_ a lad_ a