Expectation maximization (EM) is the default algorithm for fitting probabilistic models with missing or latent variables, yet we lack a full understanding of its non-asymptotic convergence properties. Previous works show results along the lines of "EM converges at least as fast as gradient descent" by assuming the conditions for the convergence of gradient descent apply to EM. This approach is not only loose, in that it does not capture that EM can make more progress than a gradient step, but the assumptions fail to hold for textbook examples of EM like Gaussian mixtures. In this work we first show that for the common setting of exponential family distributions, viewing EM as a mirror descent algorithm leads to convergence rates in Kullback-Leibler (KL) divergence. Then, we show how the KL divergence is related to first-order stationarity via Bregman divergences. In contrast to previous works, the analysis is invariant to the choice of parametrization and holds with minimal assumptions. We also show applications of these ideas to local linear (and superlinear) convergence rates, generalized EM, and non-exponential family distributions.
翻译:期望最大化( EM) 是将概率模型与缺失或潜在变量相配的默认算法, 但是我们对其非非非不规则汇合特性缺乏完全的理解。 先前的工程通过假设梯度下降趋同的条件适用于EM, 显示“ EM 趋同速度至少与梯度下降速度相同” 的线条结果。 这种方法不仅松散, 因为它不能捕捉EM 取得比梯度进步更多的进步, 但假设无法维持像高森混合物那样的EM 教科书范例 。 在这项工作中, 我们第一次展示指数家庭分布共同设置时, 将EM 视为镜反向下移算法, 导致 Kullback- Leiber (KL) 差异的趋同率。 然后, 我们展示 KL 差异如何通过布雷格曼 差异与一阶定点性相关。 与先前的工程相比, 分析是无法变异的, 并维持着极小的假设 。 我们还在本地线性( 和超线性) 趋同率、 普遍EM 以及非移动式家庭分布 中显示这些想法的应用 。