The notion of multivariate total positivity has proved to be useful in finance and psychology but may be too restrictive in other applications. In this paper we propose a concept of local association, where highly connected components in a graphical model are positively associated and study its properties. Our main motivation comes from gene expression data, where graphical models have become a popular exploratory tool. The models are instances of what we term mixed convex exponential families and we show that a mixed dual likelihood estimator has simple exact properties for such families as well as asymptotic properties similar to the maximum likelihood estimator. We further relax the positivity assumption by penalizing negative partial correlations in what we term the positive graphical lasso. Finally, we develop a GOLAZO algorithm based on block-coordinate descent that applies to a number of optimization procedures that arise in the context of graphical models, including the estimation problems described above. We derive results on existence of the optimum for such problems.
翻译:多变量共生概念在金融和心理学方面证明是有用的,但在其他应用中可能限制性过强。在本文件中,我们提出了一个地方协会的概念,在这种地方协会中,一个图形模型中高度连接的组件具有积极的联系并研究其特性。我们的主要动力来自基因表达数据,图形模型已成为一种受欢迎的探索工具。这些模型是我们使用混合共生指数家庭的例子,我们表明,一种混合的双重可能性估计器对于这些家庭具有简单准确的特性,以及类似于最大可能性估计器的消融性特性。我们进一步放松了假设,通过惩罚我们所说的正图形套件中的负部分相关性。最后,我们开发了一种GOLAZO算法,它基于块相协调的世系,适用于在图形模型中产生的一些优化程序,包括上述估算问题。我们从这些问题的最佳存在方面得出结果。