We propose a method for generating simulated contextual bandit environments for personalization tasks from recommendation datasets like MovieLens, Netflix, Last.fm, Million Song, etc. This allows for personalization environments to be developed based on real-life data to reflect the nuanced nature of real-world user interactions. The obtained environments can be used to develop methods for solving personalization tasks, algorithm benchmarking, model simulation, and more. We demonstrate our approach with numerical examples on MovieLens and IMDb datasets.
翻译:我们提出一种方法,从建议数据集中生成个人化任务的模拟背景土匪环境,如MovieLens、Netflix、Last.fm、L百万 Song等。这样就可以在真实数据的基础上发展个性化环境,以反映真实世界用户互动的细微性质。获得的环境可用于开发解决个性化任务、算法基准、模型模拟等方法。我们用MovieLens和IMDb数据集的数字示例展示我们的方法。