Human pose and shape (HPS) estimation methods achieve remarkable results. However, current HPS benchmarks are mostly designed to test models in scenarios that are similar to the training data. This can lead to critical situations in real-world applications when the observed data differs significantly from the training data and hence is out-of-distribution (OOD). It is therefore important to test and improve the OOD robustness of HPS methods. To address this fundamental problem, we develop a simulator that can be controlled in a fine-grained manner using interpretable parameters to explore the manifold of images of human pose, e.g. by varying poses, shapes, and clothes. We introduce a learning-based testing method, termed PoseExaminer, that automatically diagnoses HPS algorithms by searching over the parameter space of human pose images to find the failure modes. Our strategy for exploring this high-dimensional parameter space is a multi-agent reinforcement learning system, in which the agents collaborate to explore different parts of the parameter space. We show that our PoseExaminer discovers a variety of limitations in current state-of-the-art models that are relevant in real-world scenarios but are missed by current benchmarks. For example, it finds large regions of realistic human poses that are not predicted correctly, as well as reduced performance for humans with skinny and corpulent body shapes. In addition, we show that fine-tuning HPS methods by exploiting the failure modes found by PoseExaminer improve their robustness and even their performance on standard benchmarks by a significant margin. The code are available for research purposes.
翻译:人类表面和形状(HPS)估计方法取得了显著成果。然而,目前的HPS基准大多设计用于测试与培训数据相似的模型。当观察到的数据与培训数据大不相同,因而超出分布范围(OOOD)时,这可能导致现实世界应用中的危急情况。因此,必须测试和改进HPS方法的OOOD稳健性。为了解决这一根本问题,我们开发了一个模拟器,可以用细微的分解参数来控制,以探索人类表面的成像,例如不同形状、形状和服装。我们引入了一种基于学习的测试方法,称为PoseExaminer,通过搜索人体表面图像的参数空间参数空间来自动诊断HPS的算法。我们探索高维参数空间的战略是一个多试强化学习系统,其中代理器可以合作探索参数空间的不同部分。我们PoseExamir代码发现,在目前最精确的成型的成型比例模型中存在各种局限性。我们发现,在现实的比值模型中发现,在真实的成型模型中,我们发现其真实的成型的成型的成型的机的机的机的机的性模型,我们发现,而没有正确的机的成样的成样的成样的机的机的机的机。我们发现,在现实的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机的机。</s>