Can two separate case-control studies, one about Hepatitis disease and the other about Fibrosis, for example, be combined together? It would be hugely beneficial if two or more separately conducted case-control studies, even for entirely irrelevant purposes, can be merged together with a unified analysis that produces better statistical properties, e.g., more accurate estimation of parameters. In this paper, we show that, when using the popular logistic regression model, the combined/integrative analysis produces a more accurate estimation of the slope parameters than the single case-control study. It is known that, in a single logistic case-control study, the intercept is not identifiable, contrary to prospective studies. In combined case-control studies, however, the intercepts are proved to be identifiable under mild conditions. The resulting maximum likelihood estimates of the intercepts and slopes are proved to be consistent and asymptotically normal, with asymptotic variances achieving the semiparametric efficiency lower bound.
翻译:两种不同的病例控制研究,一种是关于肝炎病的研究,另一种是关于纤维化的研究,可以合并在一起吗?如果将两个或两个以上分别进行的病例控制研究,即使是为了完全无关的目的,可以与产生更好的统计属性的统一分析(例如更准确地估计参数)合并在一起,将大有裨益。在本文中,我们表明,在使用流行的后勤回归模型时,综合/综合分析对坡度参数的估计比单一病例控制研究更准确,已知在单一的后勤案例控制研究中,拦截是无法识别的,与预期的研究相反。然而,在合并的病例控制研究中,拦截被证明是在温和的条件下可以识别的。因此,对拦截和斜度的最大可能性的估计被证明是一致的,并且是正常的,而零的差别是达到半对称效率的较低约束。