We are faced with data comprised of entities interacting over time: this can be individuals meeting, customers buying products, machines exchanging packets on the IP network, among others. Capturing the dynamics as well as the structure of these interactions is of crucial importance for analysis. These interactions can almost always be labeled with content: group belonging, reviews of products, abstracts, etc. We model these stream of interactions as stream graphs, a recent framework to model interactions over time. Formal Concept Analysis provides a framework for analyzing concepts evolving within a context. Considering graphs as the context, it has recently been applied to perform closed pattern mining on social graphs. In this paper, we are interested in pattern mining in sequences of interactions. After recalling and extending notions from formal concept analysis on graphs to stream graphs, we introduce algorithms to enumerate closed patterns on a labeled stream graph, and introduce a way to select relevant closed patterns. We run experiments on two real-world datasets of interactions among students and citations between authors, and show both the feasibility and the relevance of our method.


翻译:我们面对的是由长期互动的实体构成的数据:可以是个人会议、客户购买产品、IP网络上的交换包机等。掌握这些互动的动态和结构对于分析至关重要。这些互动几乎总是可以标有内容:群体归属、产品审查、摘要等。我们将这些互动流作为流图模型,这是最近一个模拟互动的框架。正式概念分析提供了一个框架,用于分析在某种背景下演变的概念。将图表作为背景来考虑,最近被用于在社会图表上进行封闭模式的挖掘。在本文中,我们有兴趣在互动序列中进行模式的挖掘。在回顾和扩展图表上正式概念分析的概念后,我们引入算法,在标签的流图上列出封闭模式,并引入选择相关封闭模式的方法。我们实验了两个学生之间互动和作者之间引用的真实世界数据集,并展示了我们方法的可行性和相关性。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
9+阅读 · 2019年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
A Graph Auto-Encoder for Attributed Network Embedding
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关资讯
已删除
将门创投
9+阅读 · 2019年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员