We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP guarantee. Based on our frameworks, we can improve previous best results for private bandits learning with one-point feedback, such as private Bandits Convex Optimization etc, and obtain the first results for Bandits Convex Optimization (BCO) with multi-point feedback under LDP. LDP guarantee and black-box nature make our frameworks more attractive in real applications compared with previous specifically designed and relatively weaker differentially private (DP) context-free bandits algorithms. Further, we also extend our algorithm to Generalized Linear Bandits with regret bound $\tilde{\mathcal{O}}(T^{3/4}/\varepsilon)$ under $(\varepsilon, \delta)$-LDP which is conjectured to be optimal. Note given existing $\Omega(T)$ lower bound for DP contextual linear bandits (Shariff&Sheffe,NeurIPS2018), our result shows a fundamental difference between LDP and DP contextual bandits learning.
翻译:在本文中,我们研究了当地差异私人(LDP)强盗的学习。首先,我们提出简单的黑盒减少框架,解决大型无背景土匪学习问题,通过LDP保证,解决大型无背景土匪学习问题。根据我们的框架,我们可以通过一点反馈,如私人强盗 Convex 优化等,改进私人强盗学习的以往最佳成果,并获得Bankits Convex Optimization(BCO)的第一批结果,根据LDP的多点反馈,根据LDP的保证和黑盒性质,使得我们的框架在实际应用中更具吸引力,比以前专门设计、相对弱的私人(DP)无背景强盗算法(DP)更具吸引力。此外,我们还将我们的算法推广到通用的线性强盗,对美元(tilde_mathcal{O}(T ⁇ 3/4}/\ varepsil) $(tal)-LDP,据推测是最佳的。注意到,对于DP线性强盗(Sharif & Sheheffef,Neur DP20)和基本土匪学习结果显示LDP2018。