Community detection and hierarchy extraction are usually thought of as separate inference tasks on networks. Considering only one of the two when studying real-world data can be an oversimplification. In this work, we present a generative model based on an interplay between community and hierarchical structures. It assumes that each node has a preference in the interaction mechanism and nodes with the same preference are more likely to interact, while heterogeneous interactions are still allowed. The sparsity of the network is exploited for implementing a more efficient algorithm. We demonstrate our method on synthetic and real-world data and compare performance with two standard approaches for community detection and ranking extraction. We find that the algorithm accurately retrieves the overall node's preference in different scenarios, and we show that it can distinguish small subsets of nodes that behave differently than the majority. As a consequence, the model can recognize whether a network has an overall preferred interaction mechanism. This is relevant in situations where there is no clear "a priori" information about what structure explains the observed network datasets well. Our model allows practitioners to learn this automatically from the data.
翻译:社区检测和层次提取通常被视为网络上独立的推论任务。 在研究真实世界数据时, 仅考虑其中之一, 可能会过于简单化。 在这项工作中, 我们提出了一个基于社区与等级结构相互作用的基因模型。 它假定每个节点在互动机制中享有优先, 而具有相同偏好的节点更可能互动, 同时仍然允许多种互动。 网络的宽度被用来实施一种更有效的算法。 我们在合成和真实世界数据中展示了我们的方法, 并以两种标准方法比较绩效, 用于社区检测和排序提取。 我们发现, 算法精确地检索了不同情景中的总体节点偏好, 并且我们显示它能够区分行为与大多数不同节点的一小部分。 因此, 模型可以确认网络是否拥有一个总体首选的互动机制。 这在那些没有明确的“ 先验”信息来解释所观测到的网络数据集的情况中具有相关性。 我们的模型允许从数据中自动了解这一点。