Human Body Dimensions Estimation (HBDE) is a task that an intelligent agent can perform to attempt to determine human body information from images (2D) or point clouds or meshes (3D). More specifically, if we define the HBDE problem as inferring human body measurements from images, then HBDE is a difficult, inverse, multi-task regression problem that can be tackled with machine learning techniques, particularly convolutional neural networks (CNN). Despite the community's tremendous effort to advance human shape analysis, there is a lack of systematic experiments to assess CNNs estimation of human body dimensions from images. Our contribution lies in assessing a CNN estimation performance in a series of controlled experiments. To that end, we augment our recently published neural anthropometer dataset by rendering images with different camera distance. We evaluate the network inference absolute and relative mean error between the estimated and actual HBDs. We train and evaluate the CNN in four scenarios: (1) training with subjects of a specific gender, (2) in a specific pose, (3) sparse camera distance and (4) dense camera distance. Not only our experiments demonstrate that the network can perform the task successfully, but also reveal a number of relevant facts that contribute to better understand the task of HBDE.
翻译:人体尺寸估测(HBDE)是一项任务,智能剂可以用来试图从图像(2D)或点云或介质(3D)中确定人体信息。 更具体地说,如果我们将HBDE问题定义为从图像中推断人体测量,那么HBDE是一个困难的、反向的、多任务回归问题,可以通过机器学习技术,特别是进化神经网络(CNN)加以解决。尽管社区为推进人体形状分析做出了巨大努力,但缺乏系统实验来评估CNN对图像中人体尺寸的估计。我们的贡献在于在一系列受控实验中评估CNN估算性能。为此目的,我们通过以不同的摄像头距离拍摄我们最近公布的神经人类仪数据集。我们评估了估计值和实际的HBD之间绝对值和相对值的误差。我们用四种情景对CNNCN进行了培训和评估:(1) 具体性别主题的培训,(2) 具体面、(3) 稀有相机距离和(4) 密集摄像距离。我们不仅实验表明网络能够成功地完成这项任务,而且还揭示了相关事实的数量。