Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation. Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels, which significantly restricts their practical deployments on resource-limited devices. In this paper, we propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR. Specifically, we first introduce the light degradation prediction network to regress the degradation vector to simulate the real-world degradations, upon which the channel splitting vector is generated as the input for an efficient SR model. Then, a learnable octave convolution block is proposed to adaptively decide the channel splitting scale for low- and high-frequency features at each block, reducing computation overhead and memory cost by offering the large scale to low-frequency features and the small scale to the high ones. To further improve the RISR performance, Non-local regularization is employed to supplement the knowledge of patches from LR and HR subspace with free-computation inference. Extensive experiments demonstrate the effectiveness of DCS-RISR on different benchmark datasets. Our DCS-RISR not only achieves the best trade-off between computation/parameter and PSNR/SSIM metric, and also effectively handles real-world images with different degradation levels.
翻译:现有方法依靠重的SR模型来提升不同降解水平的低分辨率图像,这严重限制了其在资源有限的装置上的实际部署;在本文件中,我们提议为高效的Real-world图像超级分辨率(称为DCS-RISR)推出一个新的动态通道分割计划。具体地说,我们首先采用轻度降解预测网络,将降解矢量的退化矢量倒退到模拟真实世界的退化,由此生成渠道分离矢量作为高效的SR模型的投入。然后,建议采用可学习的八进制块来适应性地决定每个街区低频和高频特性的频道分级比例,通过向低频特性提供大比例的计算间接费用和记忆成本,降低高比例的计算成本。为了进一步改善RISR的性能,使用非本地正规化来补充来自LR和HR子空间的相片段知识,并进行自由投影。 大规模实验也显示DCS-IS-RI图像在不同的基准水平上的有效性。