The usual univariate interpolation problem of finding a monic polynomial f of degree n that interpolates n given values is well understood. This paper studies a variant where f is required to be composite, say, a composition of two polynomials of degrees d and e, respectively, with de=n, and therefore d+e-1 given values. Some special cases are easy to solve, and for the general case, we construct a homotopy between it and a special case. We compute a geometric solution of the algebraic curve presenting this homotopy, and this also provides an answer to the interpolation task. The computing time is polynomial in the geometric data, like the degree, of this curve. A consequence is that for almost all inputs, a decomposable interpolation polynomial exists.


翻译:通常的单亚化的内插问题, 即找到一个单多面度, 以内推给给给定值, 这个问题是众所周知的。 本文研究一个变量, 其中要求 f 是混合的, 例如, 两个多度的 d 和 e 的构成, 与 de=n 相混合, 因此 d+e-1 给定值。 一些特殊案例很容易解决, 对于一般案例来说, 我们在它和一个特殊案例之间构建一个同质。 我们计算出一个显示此同质性的测算曲线的几何解法, 这也为内推任务提供了答案。 在几何数据中, 计算时间是多元的, 与这个曲线的程度一样。 其结果就是几乎所有投入都存在一种不相容的内推多元性。

0
下载
关闭预览

相关内容

【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
52+阅读 · 2020年8月16日
算法与数据结构Python,369页pdf
专知会员服务
164+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月24日
Arxiv
0+阅读 · 2021年5月20日
Bivariate Beta LSTM
Arxiv
6+阅读 · 2019年10月7日
VIP会员
相关VIP内容
相关资讯
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员