The usual univariate interpolation problem of finding a monic polynomial f of degree n that interpolates n given values is well understood. This paper studies a variant where f is required to be composite, say, a composition of two polynomials of degrees d and e, respectively, with de=n, and therefore d+e-1 given values. Some special cases are easy to solve, and for the general case, we construct a homotopy between it and a special case. We compute a geometric solution of the algebraic curve presenting this homotopy, and this also provides an answer to the interpolation task. The computing time is polynomial in the geometric data, like the degree, of this curve. A consequence is that for almost all inputs, a decomposable interpolation polynomial exists.
翻译:通常的单亚化的内插问题, 即找到一个单多面度, 以内推给给给定值, 这个问题是众所周知的。 本文研究一个变量, 其中要求 f 是混合的, 例如, 两个多度的 d 和 e 的构成, 与 de=n 相混合, 因此 d+e-1 给定值。 一些特殊案例很容易解决, 对于一般案例来说, 我们在它和一个特殊案例之间构建一个同质。 我们计算出一个显示此同质性的测算曲线的几何解法, 这也为内推任务提供了答案。 在几何数据中, 计算时间是多元的, 与这个曲线的程度一样。 其结果就是几乎所有投入都存在一种不相容的内推多元性。