We give an algebraic characterisation of first-order logic with the neighbour relation, on finite words. For this, we consider languages of finite words over alphabets with an involution on them. The natural algebras for such languages are involution semigroups. To characterise the logic, we define a special kind of semidirect product of involution semigroups, called the locally hermitian product. The characterisation theorem for FO with neighbour states that a language is definable in the logic if and only if it is recognised by a locally hermitian product of an aperiodic commutative involution semigroup, and a locally trivial involution semigroup. We then define the notion of involution varieties of languages, namely classes of languages closed under Boolean operations, quotients, involution, and inverse images of involutory morphisms. An Eilenberg-type correspondence is established between involution varieties of languages and pseudovarieties of involution semigroups.
翻译:我们给出了与邻居关系的第一阶逻辑的代数特征, 使用限定词。 为此, 我们考虑的是一种限定词的语言, 而不是带有进化的字母。 这些语言的自然代数是进化的半组。 为了给逻辑定性, 我们定义了一种特殊的进化半组的半直接产品, 称为本地的草原产物。 FO 与邻居的定性理论表明, 一种语言在逻辑中是可定义的, 如果而且只有它被一个定期的进化混合半组以及一个局部的进化半组物所识别的话。 然后我们定义了进化语言的种类概念, 即布林操作中封闭的语言类别, 商数, 进化的, 进化的和进化的形态的反形图象。 在语言的进化品种和进化半组的伪变形之间, 一种艾伦贝格式的通信是建立在进化语言和进化半组的伪变形之间。