A modular proof-theoretic framework was recently developed to prove Craig interpolation for normal modal logics based on generalizations of sequent calculi (e.g., nested sequents, hypersequents, and labelled sequents). In this paper, we turn to uniform interpolation, which is stronger than Craig interpolation. We develop a constructive method for proving uniform interpolation via nested sequents and apply it to reprove the uniform interpolation property for normal modal logics $\mathsf{K}$, $\mathsf{D}$, and $\mathsf{T}$. We then use the know-how developed for nested sequents to apply the same method to hypersequents and obtain the first direct proof of uniform interpolation for $\mathsf{S5}$ via a cut-free sequent-like calculus. While our method is proof-theoretic, the definition of uniform interpolation for nested sequents and hypersequents also uses semantic notions, including bisimulation modulo an atomic proposition.
翻译:最近开发了一个模块校验理论框架,以证明Craig 用于基于序列计算(例如,嵌入序列序列、超序列和标签序列)的普通模式逻辑(例如,嵌入序列序列、超序列和标注序列)的正常模式逻辑的内插。 在本文件中,我们转向统一的内插,这比Craig内插更强。我们开发了一种建设性的方法,通过嵌入序列证明统一的内插,并将其应用于对普通模式逻辑($\mathsfsf{K}$、$\mathsf{D}$和$\mathsfsf{T}$等)的统一内插属性进行再分析。我们随后使用为嵌入序列开发的专门知识,对超序列应用同一方法,通过切开的序列序列序列式计算法来获得美元($\mathsf{S5}美元)统一内插的第一个直接证据。虽然我们的方法是证据-理论性,但我们用于嵌入式序列和高位数模型的一致间插图定义,包括双数模型。