We show direct and conceptually simple reductions between the classical learning with errors (LWE) problem and its continuous analog, CLWE (Bruna, Regev, Song and Tang, STOC 2021). This allows us to bring to bear the powerful machinery of LWE-based cryptography to the applications of CLWE. For example, we obtain the hardness of CLWE under the classical worst-case hardness of the gap shortest vector problem. Previously, this was known only under quantum worst-case hardness of lattice problems. More broadly, with our reductions between the two problems, any future developments to LWE will also apply to CLWE and its downstream applications. As a concrete application, we show an improved hardness result for density estimation for mixtures of Gaussians. In this computational problem, given sample access to a mixture of Gaussians, the goal is to output a function that estimates the density function of the mixture. Under the (plausible and widely believed) exponential hardness of the classical LWE problem, we show that Gaussian mixture density estimation in $\mathbb{R}^n$ with roughly $\log n$ Gaussian components given $\mathsf{poly}(n)$ samples requires time quasi-polynomial in $n$. Under the (conservative) polynomial hardness of LWE, we show hardness of density estimation for $n^{\epsilon}$ Gaussians for any constant $\epsilon > 0$, which improves on Bruna, Regev, Song and Tang (STOC 2021), who show hardness for at least $\sqrt{n}$ Gaussians under polynomial (quantum) hardness assumptions. Our key technical tool is a reduction from classical LWE to LWE with $k$-sparse secrets where the multiplicative increase in the noise is only $O(\sqrt{k})$, independent of the ambient dimension $n$.
翻译:我们用错误( LWE) 的经典学习及其连续的模拟( CLWE) 问题( Bruna, Regev, Song and Tang, STOC 2021) 来显示在概念上直接和概念上简单的减少。 这使我们能够将基于 LWE 的强力加密机器应用到 CLWE 的应用程序中。 例如, 在典型最坏情况最差的最小矢量问题下, 我们获得 CLWE 的硬度。 之前, 只是在量级最差的硬度问题下才知道这一点。 更广泛地说, 在两个问题之间, LWE 的未来发展也将适用于 CLWE 及其下游应用。 作为具体应用, 我们展示了高斯人混合物的硬度估算的硬度结果。 在高斯的混合物中, 我们的目标是输出一个函数来估计混合物的密度功能。 在( 可见和广泛相信的) 经典LWEWE 问题的指数性硬度下, 我们显示GAus 的混合物密度估算值为 $ 美元 。