The crude Monte Carlo approximates the integral $$S(f)=\int_a^b f(x)\,\mathrm dx$$ with expected error (deviation) $\sigma(f)N^{-1/2},$ where $\sigma(f)^2$ is the variance of $f$ and $N$ is the number of random samples. If $f\in C^r$ then special variance reduction techniques can lower this error to the level $N^{-(r+1/2)}.$ In this paper, we consider methods of the form $$\overline M_{N,r}(f)=S(L_{m,r}f)+M_n(f-L_{m,r}f),$$ where $L_{m,r}$ is the piecewise polynomial interpolation of $f$ of degree $r-1$ using a partition of the interval $[a,b]$ into $m$ subintervals, $M_n$ is a Monte Carlo approximation using $n$ samples of $f,$ and $N$ is the total number of function evaluations used. We derive asymptotic error formulas for the methods $\overline M_{N,r}$ that use nonadaptive as well as adaptive partitions. Although the convergence rate $N^{-(r+1/2)}$ cannot be beaten, the asymptotic constants make a huge difference. For example, for $\int_0^1(x+d)^{-1}\mathrm dx$ and $r=4$ the best adaptive methods overcome the nonadaptive ones roughly $10^{12}$ times if $d=10^{-4},$ and $10^{29}$ times if $d=10^{-8}.$ In addition, the proposed adaptive methods are easily implementable and can be well used for automatic integration. We believe that the obtained results can be generalized to multivariate integration.
翻译:粗的蒙特卡洛 大约合合合美元S(f) ⁇ ⁇ ⁇ ⁇ b f(x)\,\ mathrm dx$, 加上预期错误( 缩略) $\ sgma( f) n ⁇ 1/2}, $\ gma( f) 2美元是差价美元, 美元是随机样本的数量。 如果美元=美元, 那么特殊的减少差异技术可以将这一错误降低到 $( $)- (r+1/2) 。 在本文件中, 我们考虑的表格方法是$\ overline M ⁇, 美元= 美元, 美元= 美元= 美元= 美元, 美元= 美元= 美元= 美元。 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元。 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元=, 美元= 美元= = 美元= 美元=