The hazard and operability analysis (HAZOP) report contains precious industrial safety knowledge (ISK) with expert experience and process nature, which is of great significance to the development of industrial intelligence. Subject to the attributes of ISK, existing researches mine them through sequence labeling in deep learning. Yet, there are two thorny issues: (1) Uneven distribution of ISK and (2) Consistent importance of ISK: for safety review. In this study, we propose a novel generative mining strategy called CRGM to explore ISK. Inspired Zipf law in linguistics, CRGM consists of common-rare discriminator, induction-extension generator and ISK extractor. Firstly, the common-rare discriminator divides HAZOP descriptions into common words and rare words, and obtains the common description and the rare description, where the latter contains more industrial substances. Then, they are operated by the induction-extension generator in the way of deep text generation, the common description is induced and the rare description is extended, the material knowledge and the equipment knowledge can be enriched. Finally, the ISK extractor processes the material knowledge and equipment knowledge from the generated description through the rule template method, the additional ISK is regarded as the supplement of the training set to train the proposed sequence labeling model. We conduct multiple evaluation experiments on two industrial safety datasets. The results show that CRGM has promising and gratifying aptitudes, greatly improves the performance of the model, and is efficient and generalized. Our sequence labeling model also shows the expected performance, which is better than the existing research. Our research provides a new perspective for exploring ISK, we hope it can contribute support for the intelligent progress of industrial safety.


翻译:危险和可操作性分析(HAZOP)报告包含宝贵的工业安全知识(ISK),具有专家经验和工艺性质,对工业情报的发展具有重要意义。根据ISK的特性,现有研究通过深层学习的顺序标记来挖掘这些知识。然而,有两个棘手问题:(1) ISK分布不均,(2) ISK的一贯重要性:安全审查。在本研究中,我们提议了一个名为CRGM的新型基因化采矿战略,以探索ISK。在语言学中启发了Zipf法律,CRGM包括通用分析器、上岗扩展生成器和ISK提取器。首先,根据ISK的深度分析器将HAZOP的描述分为共同的文字和稀有的文字,并获得共同描述和稀有的描述。然后,由上岗延伸生成的发电机以深层文本生成的方式操作,共同描述,并扩展了稀有的描述,材料知识和设备知识可以丰富。最后,ISK的提取模型处理材料知识和设备序列,我们从SAZOP的预期性评估中获取了更多的材料知识和设备,而我们从SAS的进度的进度展示了我们所研订的进度,我们所研订的模型展示了我们所研订的进度,我们所研订的进度,我们所研订的动力的动力的进度是展示了一种方法,我们所研订的预的进度是用来展示的进度,我们所研订制的研订制的研订的研制的机的机的预的预的研制的研制的研制的模, 。我们所研制的研制的研制的研订制的研制的研制的研制的机的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制的研制

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员