We consider reinforcement learning (RL) in Markov Decision Processes in which an agent repeatedly interacts with an environment that is modeled by a controlled Markov process. At each time step $t$, it earns a reward, and also incurs a cost-vector consisting of $M$ costs. We design model-based RL algorithms that maximize the cumulative reward earned over a time horizon of $T$ time-steps, while simultaneously ensuring that the average values of the $M$ cost expenditures are bounded by agent-specified thresholds $c^{ub}_i,i=1,2,\ldots,M$. In order to measure the performance of a reinforcement learning algorithm that satisfies the average cost constraints, we define an $M+1$ dimensional regret vector that is composed of its reward regret, and $M$ cost regrets. The reward regret measures the sub-optimality in the cumulative reward, while the $i$-th component of the cost regret vector is the difference between its $i$-th cumulative cost expense and the expected cost expenditures $Tc^{ub}_i$. We prove that the expected value of the regret vector of UCRL-CMDP, is upper-bounded as $\tilde{O}\left(T^{2\slash 3}\right)$, where $T$ is the time horizon. We further show how to reduce the regret of a desired subset of the $M$ costs, at the expense of increasing the regrets of rewards and the remaining costs. To the best of our knowledge, ours is the only work that considers non-episodic RL under average cost constraints, and derive algorithms that can~\emph{tune the regret vector} according to the agent's requirements on its cost regrets.


翻译:我们考虑在Markov决策过程中强化学习(RL),其中代理商反复与以受控的Markov进程为模型的环境互动。每一步美元,它就得到奖励,并产生成本向量,由美元成本构成。我们设计基于模型的RL算法,使在T美元时间跨步的时限内获得的累积报酬最大化,同时确保美元成本支出的平均值受代理商规定的阈值($cuub ⁇ i,i=1,2,rdots,M美元)的约束。为了测量满足平均成本限制的强化学习算法的绩效,我们定义了以M+1美元为单位的成本向量的向量。我们设计了一个基于模型的RL算法算法,在时间跨步的时间跨度上,而成本向量的美元,而成本向量是美元,成本的美元,而成本累计成本的美元与成本的预期值之间的差。 我们的递增成本, 以Oxxxroral的预期值表示UCRL的矢量值值值, 成本的递增成本的值。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
14+阅读 · 2020年12月17日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员