Training of convolutional neural networks is a high dimensional and a non-convex optimization problem. At present, it is inefficient in situations where parametric learning rates can not be confidently set. Some past works have introduced Newton methods for training deep neural networks. Newton methods for convolutional neural networks involve complicated operations. Finding the Hessian matrix in second-order methods becomes very complex as we mainly use the finite differences method with the image data. Newton methods for convolutional neural networks deals with this by using the sub-sampled Hessian Newton methods. In this paper, we have used the complete data instead of the sub-sampled methods that only handle partial data at a time. Further, we have used parallel processing instead of serial processing in mini-batch computations. The results obtained using parallel processing in this study, outperform the time taken by the previous approach.
翻译:对共生神经网络的培训是一个高维和非混凝土优化问题。 目前,在无法自信地设定参数学习率的情况下,这种培训效率低下。 一些过去的工作采用了牛顿方法来培训深神经网络。 牛顿方法涉及复杂的操作。 以第二阶方法查找赫森矩阵非常复杂,因为我们主要使用与图像数据的有限差异方法。 牛顿方法处理共生神经网络的方法是使用分印的赫森牛顿方法。 在本文中,我们使用了完整的数据,而不是只处理部分数据的子样方法。 此外,我们在小型批量计算中使用了平行处理而不是序列处理的方法。 使用平行处理方法获得的结果超过了先前方法所用的时间。