The classic online facility location problem deals with finding the optimal set of facilities in an online fashion when demand requests arrive one at a time and facilities need to be opened to service these requests. In this work, we study two variants of the online facility location problem; (1) timed requests and (2) congestion. Both of these variants are motivated by the applications to real life and the previously known results on online facility location cannot be directly adapted to analyse them. Timed requests : In this variant, each demand request is a pair $(x,t)$ where the $x$ is the standard location of the demand while $t$ is the corresponding weight of the request. The cost of servicing request $(x,t)$ at facility $F$ is $t\cdot d(x,F')$ where $F'$ is the set of facilities available at the time of request $(x,t)$. For this variant, we present an online algorithm attaining a competitive ratio of $\mathcal{O}(\log n)$ in the secretarial model for the timed requests and show that it is optimal. Congestion : The congestion variant considers the case when there is an additional congestion cost that grows with the number of requests served by each request. For this variant, when the congestion cost is a monomial, we show that there exists an algorithm attaining a constant competitive ratio. This constant is a function of the exponent of the monomial and the facility opening cost but independent of the number of requests.


翻译:典型的在线设施定位问题涉及在需求需求满足时,以在线方式找到一套最佳设施。 在这项工作中,我们研究了在线设施定位问题的两个变式:(1) 时间化请求和(2) 拥堵。这两种变式的动机都是对真实生活的应用程序,而先前已知的在线设施定位结果无法直接调整以分析它们。 时间化请求: 在这个变式中,每项需求请求都是一对(x,t)美元,其中美元是需求的标准开口地点,美元是请求的相应权重。 在这项工作中,我们研究了在设施中为美元(x,t)美元的服务费用为美元(x,t)美元的费用为美元(x,F)美元(x,F)美元。这两种变式都是由于申请时可用的设施是美元(x,t)美元,因此无法直接加以调整。 对于这一变式,我们提出了一个在线算法,一个竞争比率为$=maxcal cal{O}(log n),但显示它是一个最佳要求。 Consmission 比例:当我们要求时,一个固定的通缩性要求是这个变式,当我们提出时,一个固定的计算时,一个固定的压是固定的压值是这个要求时,当我们要求时,一个变式的计算。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月20日
Arxiv
14+阅读 · 2020年12月17日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员