We ascertain and compare the performances of AutoML tools on large, highly imbalanced healthcare datasets. We generated a large dataset using historical administrative claims including demographic information and flags for disease codes in four different time windows prior to 2019. We then trained three AutoML tools on this dataset to predict six different disease outcomes in 2019 and evaluated model performances on several metrics. The AutoML tools showed improvement from the baseline random forest model but did not differ significantly from each other. All models recorded low area under the precision-recall curve and failed to predict true positives while keeping the true negative rate high. Model performance was not directly related to prevalence. We provide a specific use-case to illustrate how to select a threshold that gives the best balance between true and false positive rates, as this is an important consideration in medical applications. Healthcare datasets present several challenges for AutoML tools, including large sample size, high imbalance, and limitations in the available features types. Improvements in scalability, combinations of imbalance-learning resampling and ensemble approaches, and curated feature selection are possible next steps to achieve better performance. Among the three explored, no AutoML tool consistently outperforms the rest in terms of predictive performance. The performances of the models in this study suggest that there may be room for improvement in handling medical claims data. Finally, selection of the optimal prediction threshold should be guided by the specific practical application.

0
下载
关闭预览

相关内容

In the field of reproductive health, a vital aspect for the detection of male fertility issues is the analysis of human semen quality. Two factors of importance are the morphology and motility of the sperm cells. While the former describes defects in different parts of a spermatozoon, the latter measures the efficient movement of cells. For many non-human species, so-called Computer-Aided Sperm Analysis systems work well for assessing these characteristics from microscopic video recordings but struggle with human sperm samples which generally show higher degrees of debris and dead spermatozoa, as well as lower overall sperm motility. Here, machine learning methods that harness large amounts of training data to extract salient features could support physicians with the detection of fertility issues or in vitro fertilisation procedures. In this work, the overall motility of given sperm samples is predicted with the help of a machine learning framework integrating unsupervised methods for feature extraction with downstream regression models. The models evaluated herein improve on the state-of-the-art for video-based sperm-motility prediction.

0
0
下载
预览

This paper reports our preliminary work on medical incident prediction in general, and fall risk prediction in specific, using machine learning. Data for the machine learning are generated only from the particular subset of the electronic medical records (EMR) at Osaka Medical and Pharmaceutical University Hospital. As a result of conducting three experiments such as (1) machine learning algorithm comparison, (2) handling imbalance, and (3) investigation of explanatory variable contribution to the fall incident prediction, we find the investigation of explanatory variables the most effective.

0
0
下载
预览

Regression testing is an important phase to deliver software with quality. However, flaky tests hamper the evaluation of test results and can increase costs. This is because a flaky test may pass or fail non-deterministically and to identify properly the flakiness of a test requires rerunning the test suite multiple times. To cope with this challenge, approaches have been proposed based on prediction models and machine learning. Existing approaches based on the use of the test case vocabulary may be context-sensitive and prone to overfitting, presenting low performance when executed in a cross-project scenario. To overcome these limitations, we investigate the use of test smells as predictors of flaky tests. We conducted an empirical study to understand if test smells have good performance as a classifier to predict the flakiness in the cross-project context, and analyzed the information gain of each test smell. We also compared the test smell-based approach with the vocabulary-based one. As a result, we obtained a classifier that had a reasonable performance (Random Forest, 0.83) to predict the flakiness in the testing phase. This classifier presented better performance than vocabulary-based model for cross-project prediction. The Assertion Roulette and Sleepy Test test smell types are the ones associated with the best information gain values.

0
0
下载
预览

Software Vulnerability Prediction (SVP) is a data-driven technique for software quality assurance that has recently gained considerable attention in the Software Engineering research community. However, the difficulties of preparing Software Vulnerability (SV) related data remains as the main barrier to industrial adoption. Despite this problem, there have been no systematic efforts to analyse the existing SV data preparation techniques and challenges. Without such insights, we are unable to overcome the challenges and advance this research domain. Hence, we are motivated to conduct a Systematic Literature Review (SLR) of SVP research to synthesize and gain an understanding of the data considerations, challenges and solutions that SVP researchers provide. From our set of primary studies, we identify the main practices for each data preparation step. We then present a taxonomy of 16 key data challenges relating to six themes, which we further map to six categories of solutions. However, solutions are far from complete, and there are several ill-considered issues. We also provide recommendations for future areas of SV data research. Our findings help illuminate the key SV data practices and considerations for SVP researchers and practitioners, as well as inform the validity of the current SVP approaches.

0
0
下载
预览

Nowadays, colleges and universities use predictive analytics in a variety of ways to increase student success rates. Despite the potentials for predictive analytics, there exist two major barriers to their adoption in higher education: (a) the lack of democratization in deployment, and (b) the potential to exacerbate inequalities. Education researchers and policymakers encounter numerous challenges in deploying predictive modeling in practice. These challenges present in different steps of modeling including data preparation, model development, and evaluation. Nevertheless, each of these steps can introduce additional bias to the system if not appropriately performed. Most large-scale and nationally representative education data sets suffer from a significant number of incomplete responses from the research participants. Missing Values are the frequent latent causes behind many data analysis challenges. While many education-related studies addressed the challenges of missing data, little is known about the impact of handling missing values on the fairness of predictive outcomes in practice. In this paper, we set out to first assess the disparities in predictive modeling outcome for college-student success, then investigate the impact of imputation techniques on the model performance and fairness using a comprehensive set of common metrics. The comprehensive analysis of a real large-scale education dataset reveals key insights on the modeling disparity and how different imputation techniques fundamentally compare to one another in terms of their impact on the fairness of the student-success predictive outcome.

0
0
下载
预览

In practice, machine learning (ML) workflows require various different steps, from data preprocessing, missing value imputation, model selection, to model tuning as well as model evaluation. Many of these steps rely on human ML experts. AutoML - the field of automating these ML pipelines - tries to help practitioners to apply ML off-the-shelf without any expert knowledge. Most modern AutoML systems like auto-sklearn, H20-AutoML or TPOT aim for high predictive performance, thereby generating ensembles that consist almost exclusively of black-box models. This, in turn, makes the interpretation for the layperson more intricate and adds another layer of opacity for users. We propose an AutoML system that constructs an interpretable additive model that can be fitted using a highly scalable componentwise boosting algorithm. Our system provides tools for easy model interpretation such as visualizing partial effects and pairwise interactions, allows for a straightforward calculation of feature importance, and gives insights into the required model complexity to fit the given task. We introduce the general framework and outline its implementation autocompboost. To demonstrate the frameworks efficacy, we compare autocompboost to other existing systems based on the OpenML AutoML-Benchmark. Despite its restriction to an interpretable model space, our system is competitive in terms of predictive performance on most data sets while being more user-friendly and transparent.

0
0
下载
预览

Reproducible benchmarks are crucial in driving progress of machine translation research. However, existing machine translation benchmarks have been mostly limited to high-resource or well-represented languages. Despite an increasing interest in low-resource machine translation, there are no standardized reproducible benchmarks for many African languages, many of which are used by millions of speakers but have less digitized textual data. To tackle these challenges, we propose AfroMT, a standardized, clean, and reproducible machine translation benchmark for eight widely spoken African languages. We also develop a suite of analysis tools for system diagnosis taking into account the unique properties of these languages. Furthermore, we explore the newly considered case of low-resource focused pretraining and develop two novel data augmentation-based strategies, leveraging word-level alignment information and pseudo-monolingual data for pretraining multilingual sequence-to-sequence models. We demonstrate significant improvements when pretraining on 11 languages, with gains of up to 2 BLEU points over strong baselines. We also show gains of up to 12 BLEU points over cross-lingual transfer baselines in data-constrained scenarios. All code and pretrained models will be released as further steps towards larger reproducible benchmarks for African languages.

0
0
下载
预览

There has been considerable growth and interest in industrial applications of machine learning (ML) in recent years. ML engineers, as a consequence, are in high demand across the industry, yet improving the efficiency of ML engineers remains a fundamental challenge. Automated machine learning (AutoML) has emerged as a way to save time and effort on repetitive tasks in ML pipelines, such as data pre-processing, feature engineering, model selection, hyperparameter optimization, and prediction result analysis. In this paper, we investigate the current state of AutoML tools aiming to automate these tasks. We conduct various evaluations of the tools on many datasets, in different data segments, to examine their performance, and compare their advantages and disadvantages on different test cases.

0
3
下载
预览

Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.

0
38
下载
预览

Most existing knowledge graphs (KGs) in academic domains suffer from problems of insufficient multi-relational information, name ambiguity and improper data format for large-scale machine processing. In this paper, we present AceKG, a new large-scale KG in academic domain. AceKG not only provides clean academic information, but also offers a large-scale benchmark dataset for researchers to conduct challenging data mining projects including link prediction, community detection and scholar classification. Specifically, AceKG describes 3.13 billion triples of academic facts based on a consistent ontology, including necessary properties of papers, authors, fields of study, venues and institutes, as well as the relations among them. To enrich the proposed knowledge graph, we also perform entity alignment with existing databases and rule-based inference. Based on AceKG, we conduct experiments of three typical academic data mining tasks and evaluate several state-of- the-art knowledge embedding and network representation learning approaches on the benchmark datasets built from AceKG. Finally, we discuss several promising research directions that benefit from AceKG.

0
4
下载
预览
小贴士
相关论文
Sandra Ottl,Maurice Gerczuk,Shahin Amiriparian,Björn Schuller
0+阅读 · 9月16日
Atsushi Yanagisawa,Chintaka Premachandra,Hiruharu Kawanaka,Atsushi Inoue,Takeo Hata,Eiichiro Ueda
0+阅读 · 9月15日
B. H. P. Camara,M. A. G. Silva,A. T. Endo,S. R. Vergilio
0+阅读 · 9月14日
Roland Croft,Yongzheng Xie,M. Ali Babar
0+阅读 · 9月13日
Hadis Anahideh,Nazanin Nezami,Denisa G`andara
0+阅读 · 9月13日
Stefan Coors,Daniel Schalk,Bernd Bischl,David Rügamer
0+阅读 · 9月12日
Machel Reid,Junjie Hu,Graham Neubig,Yutaka Matsuo
0+阅读 · 9月10日
Towards Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools
Anh Truong,Austin Walters,Jeremy Goodsitt,Keegan Hines,C. Bayan Bruss,Reza Farivar
3+阅读 · 2019年9月3日
AutoML: A Survey of the State-of-the-Art
Xin He,Kaiyong Zhao,Xiaowen Chu
38+阅读 · 2019年8月14日
AceKG: A Large-scale Knowledge Graph for Academic Data Mining
Ruijie Wang,Yuchen Yan,Jialu Wang,Yuting Jia,Ye Zhang,Weinan Zhang,Xinbing Wang
4+阅读 · 2018年8月7日
相关资讯
无监督元学习表示学习
CreateAMind
20+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
29+阅读 · 2019年1月3日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】深度学习目标检测全面综述
机器学习研究会
17+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
8+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
9+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
17+阅读 · 2017年8月31日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
5+阅读 · 2017年8月23日
Top