In this paper we prove results relating to two homotopy relations and four homology theories developed in the topology of digital images. We introduce a new type of homotopy relation for digitally continuous functions which we call "strong homotopy." Both digital homotopy and strong homotopy are natural digitizations of classical topological homotopy: the difference between them is analogous to the difference between digital 4-adjacency and 8-adjacency in the plane. We also consider four different digital homology theories: a simplicial homology theory by Arslan et al which is the homology of the clique complex, a singular simplicial homology theory by D. W. Lee, a cubical homology theory by Jamil and Ali, and a new kind of cubical homology for digital images with $c_1$-adjacency which is easily computed, and generalizes a construction by Karaca \& Ege. We show that the two simplicial homology theories are isomorphic to each other, but distinct from the two cubical theories. We also show that homotopic maps have the same induced homomorphisms in the cubical homology theory, and strong homotopic maps additionally have the same induced homomorphisms in the simplicial theory.


翻译:在本文中,我们证明了两个同质关系和在数字图像的地形学中开发的四种同质理论的结果。我们为数字连续功能引入了新型同质关系,我们称之为“强同质”。数字同质和强同质是古典同质的自然数字化:它们之间的差异类似于数字4对称和8对称之间的差别。我们还考虑了四种不同的数字同质理论:Arslan et 等人的简单同质理论,这是科综合体的同质理论,是D. W. Lee的单一同质理论,是Jamil和Ali的异族同质理论,是数字图像与$_1对称的新型异同质关系,这很容易计算出来,并概括了Karca ⁇ Ege 的构造。我们发现,两种简单同性同质理论是相互不同的,但与两个分立体理论不同。我们还显示,同性同性同性同性主义的同性理论是同一的,同性同性主义的同性理论是同一的。

0
下载
关闭预览

相关内容

专知会员服务
86+阅读 · 2020年12月5日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员