We develop a method for analyzing spatiotemporal anomalies in geospatial data using topological data analysis (TDA). To do this, we use persistent homology (PH), a tool from TDA that allows one to algorithmically detect geometric voids in a data set and quantify the persistence of these voids. We construct an efficient filtered simplicial complex (FSC) such that the voids in our FSC are in one-to-one correspondence with the anomalies. Our approach goes beyond simply identifying anomalies; it also encodes information about the relationships between anomalies. We use vineyards, which one can interpret as time-varying persistence diagrams (an approach for visualizing PH), to track how the locations of the anomalies change over time. We conduct two case studies using spatially heterogeneous COVID-19 data. First, we examine vaccination rates in New York City by zip code. Second, we study a year-long data set of COVID-19 case rates in neighborhoods in the city of Los Angeles.
翻译:我们利用地形数据分析(TDA)开发了利用地理空间数据分析时空异常的方法。 为此,我们使用来自TDA的一个工具,即持续同系物(PH),从逻辑上检测数据集中的几何空白,并量化这些空白的持久性。我们建造了一个高效过滤的简化综合体(FSC),以便我们的FSC中的空白与异常点的一对一对应。我们的方法不仅仅是识别异常点;它还编码关于异常点之间关系的信息。我们使用葡萄园,人们可以将葡萄园解释为时间分布的持久性图表(一种可视化PH的方法),以跟踪异常点如何随时间变化。我们用空间多变的COVID-19数据进行了两个案例研究。首先,我们用拉链代码对纽约市的疫苗接种率进行了检查。第二,我们研究了洛杉矶市附近地区长达一年的COVID-19案例率数据集。