We consider the problem of certifying the robustness of deep neural networks against real-world distribution shifts. To do so, we bridge the gap between hand-crafted specifications and realistic deployment settings by proposing a novel neural-symbolic verification framework, in which we train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model. A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations, which are fundamental to many state-of-the-art generative models. To address this challenge, we propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement. The key idea is to "lazily" refine the abstraction of sigmoid functions to exclude spurious counter-examples found in the previous abstraction, thus guaranteeing progress in the verification process while keeping the state-space small. Experiments on the MNIST and CIFAR-10 datasets show that our framework significantly outperforms existing methods on a range of challenging distribution shifts.


翻译:我们考虑了在现实世界分布变化中证明深神经网络的坚固性的问题。为此,我们提出一个新的神经-正调核查框架,以训练一种基因模型,从数据中学习扰动,并界定与所学模型产出有关的规格。这一环境所产生的一个独特挑战是,现有的核查人员无法紧紧地近似对许多最先进的基因化模型至关重要的模拟活化。为了应对这一挑战,我们提议了一种处理模拟活化的一般元值,用以利用反典型的制导抽象改进的经典概念。关键的想法是“贫化地”完善模拟功能的抽象,以排除上一个抽象的反标本,从而保证核查进程取得进展,同时保持国家空间小。对MNIST和CIFAR-10数据集的实验表明,我们的框架大大超越了在具有挑战性的分布变化范围上的现有方法。</s>

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
0+阅读 · 2023年4月25日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员