Contrastive learning is a form of self-supervision that can leverage unlabeled data to produce pretrained models. While contrastive learning has demonstrated promising results on natural image classification tasks, its application to medical imaging tasks like chest X-ray interpretation has been limited. In this work, we propose MoCo-CXR, which is an adaptation of the contrastive learning method Momentum Contrast (MoCo), to produce models with better representations and initializations for the detection of pathologies in chest X-rays. In detecting pleural effusion, we find that linear models trained on MoCo-CXR-pretrained representations outperform those without MoCo-CXR-pretrained representations, indicating that MoCo-CXR-pretrained representations are of higher-quality. End-to-end fine-tuning experiments reveal that a model initialized via MoCo-CXR-pretraining outperforms its non-MoCo-CXR-pretrained counterpart. We find that MoCo-CXR-pretraining provides the most benefit with limited labeled training data. Finally, we demonstrate similar results on a target Tuberculosis dataset unseen during pretraining, indicating that MoCo-CXR-pretraining endows models with representations and transferability that can be applied across chest X-ray datasets and tasks.


翻译:对比性学习是一种自我监督的学习形式,它能够利用未贴标签的数据来制作经过培训的模型。对比性学习在自然图像分类任务方面显示了有希望的成果,但对于胸前X光解释等医疗成像任务的应用有限。在这项工作中,我们提议采用Moco-CXR,这是对对比性学习方法“动态对比”(MoCo)的调整,以产生模型,在检查胸前X光检查病理方面,具有更好的表现和初始化能力。在检测胸前X光检查时,我们发现,在MoC-CXR预先培训的表象模型比没有部-CXR预先培训的表象具有最大的效益,表明MoC-CXR预先培训的表象质量较高。最后,我们展示了通过MOC-CXR前培训模型开始的模型,在MC-CS-CARE测试前的模像性数据转换过程中,我们展示了类似的结果。

1
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Arxiv
3+阅读 · 2018年8月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Top
微信扫码咨询专知VIP会员