Ordinal data occur frequently in the social sciences. When applying principal components analysis (PCA), however, those data are often treated as numeric implying linear relationships between the variables at hand, or non-linear PCA is applied where the obtained quantifications are sometimes hard to interpret. Non-linear PCA for categorical data, also called optimal scoring/scaling, constructs new variables by assigning numerical values to categories such that the proportion of variance in those new variables that is explained by a predefined number of principal components is maximized. We propose a penalized version of non-linear PCA for ordinal variables that is an intermediate between standard PCAon category labels and non-linear PCA as used so far. The new approach is by no means limited to monotonic effects, and offers both better interpretability of the non-linear transformation of the category labels as well as better performance on validation data than unpenalized non-linear PCA and/or standard linear PCA. In particular, an application of penalized non-linear PCA to ordinal data as given with the International Classification of Functioning, Disability and Health (ICF) is provided.


翻译:在应用主要组成部分分析(PCA)时,这些数据往往被视为数字式的表示手头变量之间的线性关系,或者在获得的量化有时难以解释的情况下使用非线性五氯苯甲醚。非线性五氯苯甲醚用于绝对数据,也称为最佳评分/缩放,通过给不同类别分配数字值来构建新的变量,使以预定主要组成部分数量解释的新变量的差异比例最大化。我们建议对标准五氯苯甲醚类别标签和非线性五氯苯甲醚之间迄今使用的中间变量采用非线性五氯苯甲醚的处罚版非线性非线性五氯苯甲醚。新的方法绝不局限于单体效应,而是为类别标签非线性转换提供更好的解释性,以及比非线性非线性非线性五氯苯甲醚和/或标准线性五氯苯甲醚在验证数据上的更好表现。我们特别建议对国际功能、残疾和健康分类(ICF)中给出的正统性非线性五氯苯甲醚数据适用非线性五氯苯甲醚。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
【经典书】模式识别导论,561页pdf
专知会员服务
84+阅读 · 2021年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2021年11月28日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
4+阅读 · 2017年11月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员