Today, generalized linear mixed models are broadly used in many fields. However, the development of tools for performing simultaneous inference has been largely neglected in this domain. A framework for joint inference is indispensable to carry out statistically valid multiple comparisons of parameters of interest between all or several clusters. We therefore develop simultaneous confidence intervals and multiple testing procedures for empirical best predictors under generalized linear mixed models. In addition, we implement our methodology to study widely employed examples of mixed models, that is, the unit-level binomial, the area-level Poisson-gamma and the area-level Poisson-lognormal mixed models. The asymptotic results are accompanied by extensive simulations. A case study on predicting poverty rates illustrates applicability and advantages of our simultaneous inference tools.
翻译:目前,一般线性混合模型在许多领域广泛使用,然而,在这一领域,开发同时进行推断的工具在很大程度上被忽略了。联合推断框架对于对所有组或几个组之间的利益参数进行统计上有效的多重比较必不可少。因此,我们为在一般线性混合模型下的经验最佳预测人制定同时的互信间隔和多重测试程序。此外,我们采用的方法广泛研究混合模型的例子,即单位级二元模型、地区级普瓦松-伽马模型和地区级普瓦松-超常混合模型。在得出联合推断结果的同时,还进行广泛的模拟。关于预测贫穷率的案例研究说明了我们同时推断工具的适用性和优势。