Joint registration of a stack of 2D histological sections to recover 3D structure (``3D histology reconstruction'') finds application in areas such as atlas building and validation of \emph{in vivo} imaging. Straightforward pairwise registration of neighbouring sections yields smooth reconstructions but has well-known problems such as ``banana effect'' (straightening of curved structures) and ``z-shift'' (drift). While these problems can be alleviated with an external, linearly aligned reference (e.g., Magnetic Resonance (MR) images), registration is often inaccurate due to contrast differences and the strong nonlinear distortion of the tissue, including artefacts such as folds and tears. In this paper, we present a probabilistic model of spatial deformation that yields reconstructions for multiple histological stains that that are jointly smooth, robust to outliers, and follow the reference shape. The model relies on a spanning tree of latent transforms connecting all the sections and slices of the reference volume, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images. Bayesian inference is used to compute the most likely latent transforms given a set of pairwise registrations between image pairs within and across modalities. The framework is used for accurate 3D reconstruction of two stains (Nissl and parvalbumin) from the Allen human brain atlas, showing its benefits on real data with severe distortions. Moreover, we also provide the registration of the reconstructed volume to MNI space, bridging the gaps between two of the most widely used atlases in histology and MRI. The 3D reconstructed volumes and atlas registration can be downloaded from https://openneuro.org/datasets/ds003590. The code is freely available at https://github.com/acasamitjana/3dhirest.


翻译:用于恢复 3D 结构( “ 3D 组织重建 ” ) 的堆叠2D 直系图解部分的联合注册在地图类的构建和验证 emph{ in vivo} 成像 中发现应用。 相邻部分的直向双向登记可以带来平稳的重建, 但有众所周知的问题, 如“ Baanana 效果 ” ( 曲线结构的冲击 ) 和“ z- tray ” (drft) 。 这些问题可以通过外部的线性一致参考( 例如, Magnic Resonance (MR) 图像) 得到缓解, 注册往往不准确, 因为对比差异以及组织( 包括折叠和眼泪等手工艺) 的强烈非线性扭曲。 在本文中,我们提出了一个空间变形图解的概率模型, 也可以在双向的服务器上看到其变形图解, 在两版的图像中, 其变形中, 其变形的变形的模型可以显示 。 在两版的图像中, 正在变现的图像中, 正在变现的图像中, 将使用 正在变现的变现的变现的 。 。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员