We study the dynamics of perturbations around an inhomogeneous stationary state of the Vlasov-HMF (Hamiltonian Mean-Field) model, satisfying a linearized stability criterion (Penrose criterion). We consider solutions of the linearized equation around the steady state, and prove the algebraic decay in time of the Fourier modes of their density. We prove moreover that these solutions exhibit a scattering behavior to a modified state, implying a linear Landau damping effect with an algebraic rate of damping.
翻译:我们研究的是Vlasov-HMF(赫尔米顿平均战地)模型的不相容固定状态周围的扰动动态,这符合线性稳定标准(彭罗斯标准 ) 。 我们考虑的是稳定状态周围线性方程式的解决方案,并证明在Fourier密度模式出现时的代数衰减。 此外,我们证明这些解决方案表现出一种向改变状态的分散行为,意味着一种线性Landau障碍效应,以及代数障碍率。