Scene Dynamic Recovery (SDR) by inverting distorted Rolling Shutter (RS) images to an undistorted high frame-rate Global Shutter (GS) video is a severely ill-posed problem due to the missing temporal dynamic information in both RS intra-frame scanlines and inter-frame exposures, particularly when prior knowledge about camera/object motions is unavailable. Commonly used artificial assumptions on scenes/motions and data-specific characteristics are prone to producing sub-optimal solutions in real-world scenarios. To address this challenge, we propose an event-based SDR network within a self-supervised learning paradigm, i.e., SelfUnroll. We leverage the extremely high temporal resolution of event cameras to provide accurate inter/intra-frame dynamic information. Specifically, an Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals, including the temporal transition and spatial translation. Exploring connections in terms of RS-RS, RS-GS, and GS-RS, we explicitly formulate mutual constraints with the proposed E-IC, resulting in supervisions without ground-truth GS images. Extensive evaluations over synthetic and real datasets demonstrate that the proposed method achieves state-of-the-art and shows remarkable performance for event-based RS2GS inversion in real-world scenarios. The dataset and code are available at https://w3un.github.io/selfunroll/.
翻译:滚动快门(RS)图像到非畸变高帧率全局快门(GS)视频的场景动态恢复(SDR)是一个高度欠定问题,由于RS帧内扫描线和帧间曝光中缺失了时间动态信息,特别是在没有关于相机/物体运动的先验知识的情况下。在实际场景中,通常使用关于场景/运动和数据特性的人工假设,容易产生次优解。为了解决这个挑战,我们提出了一种事件驱动的自监督学习范式的SDR网络,即SelfUnroll。我们利用事件相机的极高时间分辨率提供准确的帧内和帧间动态信息。具体而言,我们提出了一个基于事件的帧内/帧间补偿器(E-IC)来预测任意时间间隔之间的每个像素动态,包括时间过渡和空间平移。通过在RS-RS、RS-GS和GS-RS方面探索连接,我们明确制定了E-IC的相互约束条件,从而实现了没有GS图像的监督。对合成和真实数据集的广泛评估表明,所提出的方法取得了最好的效果,并在真实场景中展示了显着的RS2GS反演性能。数据集和代码可在https://w3un.github.io/selfunroll/上获得。