In this paper we introduce the notion of a complete time graph of order n. We define time paths and Hamiltonian time paths in a complete time graph. Each Hamiltonian time path (htp) is associated with some permutation p of the integers 1 to n. The characteristic function of this path forms a vector in the vector space of rational-valued functions on the set of edges of the compete time graph. We will consider the vector space generated by these functions. The main result in this paper is to determine the dimension of this vector space for n greater than or equal to 5. We also give an algorithm with its complexity for the construction of a basis in this vector space.
翻译:在本文中,我们引入了完整的时间顺序图的概念 n。 我们在完整的时间图中定义时间路径和汉密尔顿时间路径。 每个汉密尔顿时间路径(htp)都与整数 1 到 n 的某种变换 p 相关。 此路径的特性功能在竞争时间图边缘一组合理值函数的矢量空间中形成矢量。 我们将考虑这些函数产生的矢量空间。 本文的主要结果就是确定该矢量空间的尺寸大于或等于 5 。 我们还给出一个具有复杂性的算法, 用于构建此矢量空间的基础 。