Recently, Vector Quantized AutoRegressive (VQ-AR) models have shown remarkable results in text-to-image synthesis by equally predicting discrete image tokens from the top left to bottom right in the latent space. Although the simple generative process surprisingly works well, is this the best way to generate the image? For instance, human creation is more inclined to the outline-to-fine of an image, while VQ-AR models themselves do not consider any relative importance of image patches. In this paper, we present a progressive model for high-fidelity text-to-image generation. The proposed method takes effect by creating new image tokens from coarse to fine based on the existing context in a parallel manner, and this procedure is recursively applied with the proposed error revision mechanism until an image sequence is completed. The resulting coarse-to-fine hierarchy makes the image generation process intuitive and interpretable. Extensive experiments in MS COCO benchmark demonstrate that the progressive model produces significantly better results compared with the previous VQ-AR method in FID score across a wide variety of categories and aspects. Moreover, the design of parallel generation in each step allows more than $\times 13$ inference acceleration with slight performance loss.
翻译:最近, 矢量量化自动递减模型( VQ- AR) 在文本合成到图像合成中显示了显著的结果, 通过在潜层空间的左上至右下平等预测离散图像符号。 虽然简单的基因化过程令人惊讶地非常成功, 但这是生成图像的最佳方法吗? 例如, 人类创造更倾向于图像的大纲到框架, 而 VQ- AR 模型本身并不认为图像补丁具有相对重要性 。 在本文中, 我们展示了一个高不端文本到模拟生成的渐进模型。 提议的方法通过以平行方式根据现有环境创建新的图像符号, 从粗到细, 产生效果。 在图像序列完成之前, 这个程序会与拟议的错误修正机制反复应用 。 由此产生的粗度到纤维的等级使得图像生成过程不易理解和可解释 。 MS COCOCO 基准中的广泛实验显示, 进步模型产生的结果比以往的VQ- AR 方法在FID 中, 在一系列的类别和方面进行比 $ 方面, 大大改进。 此外, 能够以轻微的加速度计算 。