With the development of technology and sharing economy, Airbnb as a famous short-term rental platform, has become the first choice for many young people to select. The issue of Airbnb's pricing has always been a problem worth studying. While the previous studies achieve promising results, there are exists deficiencies to solve. Such as, (1) the feature attributes of rental are not rich enough; (2) the research on rental text information is not deep enough; (3) there are few studies on predicting the rental price combined with the point of interest(POI) around the house. To address the above challenges, we proposes a multi-source information embedding(MSIE) model to predict the rental price of Airbnb. Specifically, we first selects the statistical feature to embed the original rental data. Secondly, we generates the word feature vector and emotional score combination of three different text information to form the text feature embedding. Thirdly, we uses the points of interest(POI) around the rental house information generates a variety of spatial network graphs, and learns the embedding of the network to obtain the spatial feature embedding. Finally, this paper combines the three modules into multi source rental representations, and uses the constructed fully connected neural network to predict the price. The analysis of the experimental results shows the effectiveness of our proposed model.
翻译:随着技术和共享经济的发展,Airbnb公司作为著名的短期租赁平台,已成为许多年轻人首选的首选。Airbnb公司定价问题一直是值得研究的一个问题。虽然以前的研究取得了有希望的结果,但还存在一些需要解决的缺陷。例如:(1)租金的特征特征不够丰富;(2)租赁文本信息研究不够深入;(3)关于租金价格预测的研究与房屋周围感兴趣的点(POI)相结合的研究很少。为了应对上述挑战,我们建议采用多源信息嵌入模型来预测Airbnb公司租金价格。具体地说,我们首先选择了将原始租赁数据嵌入的统计特征。第二,我们生成了三个不同文本信息的字性矢量和情感分组合来组成文本嵌入功能。第三,我们使用租房模型周围的利息点来生成各种空间网络图,并学习网络嵌入以获取空间特征嵌入。最后,我们将三个模块合并到我们所建的多源模型的模型中,并展示了我们所建的实验性价格分析结果。