This paper presents an automated approach for providing ranked lists of outliers in observed demand to support analysts in network revenue management. Such network revenue management, e.g. for railway itineraries, needs accurate demand forecasts. However, demand outliers across or in parts of a network complicate accurate demand forecasting, and the network structure makes such demand outliers hard to detect. We propose a two-step approach combining clustering with functional outlier detection to identify outlying demand from network bookings observed on the leg level. The first step clusters legs to appropriately partition and pool booking patterns. The second step identifies outliers within each cluster and uses a novel aggregation method across legs to create a ranked alert list of affected instances. Our method outperforms analyses that consider leg data without regard for network implications and offers a computationally efficient alternative to storing and analysing all data on the itinerary level, especially in highly-connected networks where most customers book multi-leg products. A simulation study demonstrates the robustness of the approach and quantifies the potential revenue benefits from adjusting demand forecasts for offer optimisation. Finally, we illustrate the applicability based on empirical data obtained from Deutsche Bahn.
翻译:本文介绍了一种自动化办法,用于提供观察到的需求的排位清单,以支持网络收入管理的分析人员。这种网络收入管理,例如铁路路线的网络收入管理,需要准确的需求预测。然而,一个网络之间或部分内部的需求外端使准确的需求预测复杂化,而网络结构使这种需求外端难以检测。我们提议了一种两步办法,将组合与功能外端检测相结合,以查明在腿一级观察到的网络订票需求外向。第一步是适当分区和集合订票模式。第二步是确定每个组群内的外端,并使用跨腿的新型集成法来创建受影响案例的排位警戒清单。我们的方法优于分析,这种分析考虑到腿数据而不考虑网络影响,并提供一种计算上高效的替代方法,用以储存和分析行程水平上的所有数据,特别是在大多数客户都订有多腿产品的高度连接的网络中。模拟研究显示该方法的稳健性,并量化调整供方最佳化需求预测的潜在收入收益。最后,我们根据从德意志航空公司获得的经验数据,说明其适用性。</s>