While cloud/sky image segmentation has extensive real-world applications, a large amount of labelled data is needed to train a highly accurate models to perform the task. Scarcity of such volumes of cloud/sky images with corresponding ground-truth binary maps makes it highly difficult to train such complex image segmentation models. In this paper, we demonstrate the effectiveness of using Generative Adversarial Networks (GANs) to generate data to augment the training set in order to increase the prediction accuracy of image segmentation model. We further present a way to estimate ground-truth binary maps for the GAN-generated images to facilitate their effective use as augmented images. Finally, we validate our work with different statistical techniques.
翻译:虽然云层/天空图像分割具有广泛的现实应用,但需要大量贴有标签的数据来训练高度精确的模型来完成这项任务,由于云层/天空图像数量稀少,加上相应的地面实况二进制地图,因此非常难以训练这种复杂的图像分割模型。在本文中,我们展示了利用基因反影网络(GANs)生成数据的有效性,以扩大培训数据集,从而提高图像分割模型的预测准确性。我们进一步展示了一种方法,用以估计GAN产生的图像的地面实况二进制地图,以便利这些图像作为增强图像的有效利用。最后,我们用不同的统计技术验证了我们的工作。