In recent years, there has been a substantive interest in rough volatility models. In this class of models, the local behavior of stochastic volatility is much more irregular than semimartingales and resembles that of a fractional Brownian motion with Hurst parameter $H < 0.5$. In this paper, we derive a consistent and asymptotically mixed normal estimator of $H$ based on high-frequency price observations. In contrast to previous works, we work in a semiparametric setting and do not assume any a priori relationship between volatility estimators and true volatility. Furthermore, our estimator attains a rate of convergence that is known to be optimal in a minimax sense in parametric rough volatility models.
翻译:暂无翻译