The paper studies an Allen-Cahn-type equation defined on a time-dependent surface as a model of phase separation with order-disorder transition in a thin material layer. By a formal inner-outer expansion, it is shown that the limiting behavior of the solution is a geodesic mean curvature type flow in reference coordinates. A geometrically unfitted finite element method, known as a trace FEM, is considered for the numerical solution of the equation. The paper provides full stability analysis and convergence analysis that accounts for interpolation errors and an approximate recovery of the geometry.
翻译:论文研究了Allen-Cahn型方程式,该方程式的定义是,根据时间而定的表面,作为在薄材料层中发生秩序紊乱过渡的分阶段分离模式。通过正式的内部外延扩展,可以表明,解决方案的限制性行为是参考坐标中的大地学平均曲线类型流。为该方程的数值解决方案,考虑采用一种以几何学学为不合适的有限元素方法,称为跟踪FEM。该文件提供了完整的稳定性分析和趋同分析,其中说明了内插误差和几何学大致恢复。