In the load balancing problem, each node in a network is assigned a load, and the goal is to equally distribute the loads among the nodes, by preforming local load exchanges. While load balancing was extensively studied in static networks, only recently a load balancing algorithm for dynamic networks with a bounded convergence time was presented. In this paper, we further study the time complexity of load balancing in the context of dynamic networks. First, we show that randomness is not necessary, and present a deterministic algorithm which slightly improves the running time of the previous algorithm, at the price of not being matching-based. Then, we consider integral loads, i.e., loads that cannot be split indefinitely, and prove that no matching-based algorithm can have a bounded convergence time for this case. To circumvent both this impossibility result, and a known one for the non-integral case, we apply the method of smoothed analysis, where random perturbations are made over the worst-case choices of network topologies. We show both impossibility results do not hold under this kind of analysis, suggesting that load-balancing in real world systems might be faster than the lower bounds suggest.
翻译:在负负平衡问题中, 网络中的每个节点都会被分配一个负荷, 目标是通过预设本地负载交换在节点之间平均分配负载。 虽然负平衡是在静态网络中广泛研究的, 但只是最近才展示了具有连接合并时间的动态网络的负平衡算法。 在本文中, 我们进一步研究了动态网络中负平衡的时间复杂性。 首先, 我们显示随机性是不必要的, 并呈现一种确定性算法, 略微改善前一种算法的运行时间, 价格不以匹配为基础。 然后, 我们考虑的是整体负载, 也就是说, 无法无限期分割的负载, 并且证明没有匹配基的算法能够为这个案例设定一个约束的趋同时间 。 为了绕过这一不可能的结果, 以及已知的非任意性 情况中, 我们采用了平滑的分析方法, 即随机扰动的计算方法 超越了最坏的网络型态选择 。 我们发现两种不可能的结果都不在这种分析之下, 表明现实世界系统中的负载平衡速度可能比低限建议更快 。