Polyp segmentation is of great importance in the early diagnosis and treatment of colorectal cancer. Since polyps vary in their shape, size, color, and texture, accurate polyp segmentation is very challenging. One promising way to mitigate the diversity of polyps is to model the contextual relation for each pixel such as using attention mechanism. However, previous methods only focus on learning the dependencies between the position within an individual image and ignore the contextual relation across different images. In this paper, we propose Duplex Contextual Relation Network (DCRNet) to capture both within-image and cross-image contextual relations. Specifically, we first design Interior Contextual-Relation Module to estimate the similarity between each position and all the positions within the same image. Then Exterior Contextual-Relation Module is incorporated to estimate the similarity between each position and the positions across different images. Based on the above two types of similarity, the feature at one position can be further enhanced by the contextual region embedding within and across images. To store the characteristic region embedding from all the images, a memory bank is designed and operates as a queue. Therefore, the proposed method can relate similar features even though they come from different images. We evaluate the proposed method on the EndoScene, Kvasir-SEG and the recently released large-scale PICCOLO dataset. Experimental results show that the proposed DCRNet outperforms the state-of-the-art methods in terms of the widely-used evaluation metrics.
翻译:在早期诊断和治疗直肠癌的过程中,聚合分割非常重要。 由于聚谱体的形状、大小、颜色和纹理各不相同, 准确的聚变分化非常具有挑战性。 减缓聚象体多样性的一个有希望的方法是模拟每个像素的背景关系, 如使用注意机制。 但是, 以往的方法只侧重于学习单个图像中的位置之间的依赖关系, 忽略不同图像之间的背景关系。 在本文中, 我们提议双倍背景关系关系网络( DCRNet) 以捕捉图像内部和交叉图像背景关系。 具体地说, 我们首先设计内部背景关系网络模块, 来估计每个位置和同一图像中的所有位置之间的相似性。 然后, 外貌背景关系模块用于估算每个位置和不同图像之间的位置之间的相似性。 根据以上两种相似性类型, 一个位置的特征可以被嵌入和跨图像的背景区域进一步加强。 存储从所有图像中嵌入的特性区域, 内存库和跨映射背景关系。 具体地说, 我们首先设计并运行内部环境关系模块模块中的拟议模型, 。 因此, East号 的缩缩缩缩缩缩缩缩缩缩略图方法将显示大的缩缩缩缩缩缩缩缩图。 。 。 。 拟议方法将最终的缩略图中的拟议方法将显示的缩略图的缩略图的缩略图的缩略图的缩略图中, 。