Domain adaptive semantic segmentation refers to making predictions on a certain target domain with only annotations of a specific source domain. Current state-of-the-art works suggest that performing category alignment can alleviate domain shift reasonably. However, they are mainly based on image-to-image adversarial training and little consideration is given to semantic variations of an object among images, failing to capture a comprehensive picture of different categories. This motivates us to explore a holistic representative, the semantic distribution from each category in source domain, to mitigate the problem above. In this paper, we present semantic distribution-aware contrastive adaptation algorithm that enables pixel-wise representation alignment under the guidance of semantic distributions. Specifically, we first design a pixel-wise contrastive loss by considering the correspondences between semantic distributions and pixel-wise representations from both domains. Essentially, clusters of pixel representations from the same category should cluster together and those from different categories should spread out. Next, an upper bound on this formulation is derived by involving the learning of an infinite number of (dis)similar pairs, making it efficient. Finally, we verify that SDCA can further improve segmentation accuracy when integrated with the self-supervised learning. We evaluate SDCA on multiple benchmarks, achieving considerable improvements over existing algorithms.The code is publicly available at https://github.com/BIT-DA/SDCA
翻译:内地适应性语义分解是指对某一目标域的预测,只有特定源域的注释。当前最新工艺的工程表明,进行类内调整可以合理地减轻域变化。然而,它们主要基于图像到图像的对抗性培训,很少考虑图像之间对象的语义变化,没有全面反映不同类别。这促使我们探索一个整体代表,即源域中每个类别中的语义分布分布,以缓解上述问题。在本文中,我们提出语义分布-有色度对比性适应算法,以便在语义分布分布的指引下,使像素-顺势代表比例一致。具体地说,我们首先设计一个像素偏向对比性的损失,方法是考虑两个区域之间语义分布和像素表达之间的对应关系。基本上,同一类别中的像素表达群应该聚集在一起,而不同类别中的像素表达应该分散。接下来,我们通过学习无限数量的(disl)近比对等配方的配方,使SDA/DA的精确性得到改进。最后,我们核查SDA在现有的多级SDA/CA上如何改进。我们用现有的SDA/CASDA 校的校校校校校校校校校校校校校校校校校校的校校校校校校校校校校可以进行大量的大量进行大量的大量。