The number-theoretic codes are a class of codes defined by single or multiple congruences and are mainly used for correcting insertion and deletion errors. Since the number-theoretic codes are generally non-linear, the analysis method for such codes is not established enough. The distance enumerator of a code is a unary polynomial whose $i$th coefficient gives the number of the pairs of codewords with distance $i$. The distance enumerator gives the maximum likelihood decoding error probability of the code. This paper presents an identity of the distance enumerators for the number-theoretic codes. Moreover, as an example, we derive the Hamming distance enumerator for the Varshamov-Tenengolts (VT) codes.
翻译:数字理论代码是由单一或多重一致定义的代码类别,主要用于纠正插入和删除错误。由于数字理论代码一般都是非线性代码,因此这种代码的分析方法不够确定。一个代码的距离计算器是一个单数多数值,其值为$th系数,它给出了带有距离$i的对数编码字数。距离计算器给出了该代码的最大可能性解码错误概率。本文展示了数字理论代码的距离计算器身份。此外,举例来说,我们为Varshamov-Tenngolts(VT)的代码绘制了宽度距离计算器。