In a (parameterized) graph edge modification problem, we are given a graph $G$, an integer $k$ and a (usually well-structured) class of graphs $\mathcal{G}$, and ask whether it is possible to transform $G$ into a graph $G' \in \mathcal{G}$ by adding and/or removing at most $k$ edges. Parameterized graph edge modification problems received considerable attention in the last decades. In this paper, we focus on finding small kernels for edge modification problems. One of the most studied problems is the Cluster Editing problem, in which the goal is to partition the vertex set into a disjoint union of cliques. Even if this problem admits a $2k$ kernel [Cao, 2012], this kernel does not reduce the size of most instances. Therefore, we explore the question of whether linear kernels are a theoretical limit in edge modification problems, in particular when the target graphs are very structured (such as a partition into cliques for instance). We prove, as far as we know, the first sublinear kernel for an edge modification problem. Namely, we show that Clique + Independent Set Deletion, which is a restriction of Cluster Deletion, admits a kernel of size $O(k/\log k)$. We also obtain small kernels for several other edge modification problems. We prove that Split Addition (and the equivalent Split Deletion) admits a linear kernel, improving the existing quadratic kernel of Ghosh et al. [Ghosh et al., 2015]. We complement this result by proving that Trivially Perfect Addition admits a quadratic kernel (improving the cubic kernel of Guo [Guo, 2007]), and finally prove that its triangle-free version (Starforest Deletion) admits a linear kernel, which is optimal under ETH.


翻译:在( 参数化) 图形边缘修改问题中, 我们得到的是一张G$的图形, 一张整数美元和一张( 通常结构化的) 图表 $\ mathcal{ G} 美元, 并询问是否有可能通过添加和( 或) 去除大部分美元边缘来将G$转换成一个图形 $G' in\ mathcal{ G} 美元。 参数化的图形边缘修改问题在过去几十年里得到了相当的注意 。 在本文中, 我们的重点是找到用于边缘修改问题的小内核。 研究最多的一个问题是 Croup编辑问题之一, 目标是将Galdalex 分割成一个不连结的结 。 即使这个问题接纳了$G' 内核[ Ca, 2012], 这个内核内核的内核修正问题是否是理论化的理论性限度, 特别是当目标图表结构化的( 比如, 将部分平分解到 ) 。 我们证明, 内核的内核的内核是 的底核的, 。

0
下载
关闭预览

相关内容

【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员