Let $f: X \times Y \rightarrow \{0,1,\bot \}$ be a partial function and $\mu$ be a distribution with support contained in $f^{-1}(0) \cup f^{-1}(1)$. Let $\mathsf{D}^{1,\mu}_\epsilon(f)$ be the classical one-way communication complexity of $f$ with average error under $\mu$ at most $\epsilon$, $\mathsf{Q}^{1,\mu}_\epsilon(f)$ be the quantum one-way communication complexity of $f$ with average error under $\mu$ at most $\epsilon$ and $\mathsf{Q}^{1,\mu, *}_\epsilon(f)$ be the entanglement assisted one-way communication complexity of $f$ with average error under $\mu$ at most $\epsilon$. We show: 1. If $\mu$ is a product distribution, then $\forall \epsilon, \eta > 0$, $$\mathsf{D}^{1,\mu}_{2\epsilon + \eta}(f) \leq \mathsf{Q}^{1,\mu, *}_{\epsilon}(f) /\eta+O\bigl(\log(\mathsf{Q}^{1,\mu, *}_{\epsilon}(f))/\eta\bigr).$$ 2. If $\mu$ is a non-product distribution, then $\forall \epsilon, \eta > 0$ such that $\epsilon/\eta + \eta < 0.5$, $$\mathsf{D}^{1,\mu}_{3\eta}(f) = O(\mathsf{Q}^{1,\mu}_{{\epsilon}}(f) \cdot \mathsf{CS}(f)/\eta^4)\enspace,$$ where \[\mathsf{CS}(f) = \max_{y} \min_{z\in\{0,1\}} \{ \vert \{x~|~f(x,y)=z\} \vert\} \enspace.\]
翻译:letf: $X\time Y $, 1,\bot $ 是一个部分函数, $\mu$是包含在 $\\ 1} (0)\ cup f\ 1} $。 $\ metisf{ D1,\ mu\ epsilon( f) 是典型的单向通信复杂性 $, 美元以下平均错误 $\ 美元以下 $\ fislon$, $\ m2,\\\\\\\ ma\ 美元 美元 美元 美元 。 如果 $\\\\ f\ f\, = 美元 美元 美元 美元 美元, 美元 = = 美元 美元 = = 美元 = = = = 美元, = = 美元= = 美元= 美元, 美元= 美元= f1, 美元= 美元= 美元下的平均错误 $\\\ fl\ flon, 我们显示 = 1, = = = = $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\