Let $G$ be a random $d$-regular graph. We prove that for every constant $\alpha > 0$, with high probability every eigenvector of the adjacency matrix of $G$ with eigenvalue less than $-2\sqrt{d-2}-\alpha$ has $\Omega(n/$polylog$(n))$ nodal domains.
翻译:$G$ 是一个随机的 $d$ 普通图表。 我们证明,对于每个恒定 $\ alpha > 0$, 高概率是每个相邻基体$G$, 其中间值小于$-2\ sqrt{d-2} -\ alpha$ 的精子都拥有$\ Omega(n/$polylog$(n)) 的节点域 。