We introduce a minimalist outbreak forecasting model that combines data-driven parameter estimation with variational data assimilation. By focusing on the fundamental components of nonlinear disease transmission and representing data in a domain where model stochasticity simplifies into a process with independent increments, we design an approach that only requires four core parameters to be estimated. We illustrate this novel methodology on COVID-19 forecasts. Results include case count and deaths predictions for the US and all of its 50 states, the District of Columbia, and Puerto Rico. The method is computationally efficient and is not disease- or location-specific. It may therefore be applied to other outbreaks or other countries, provided case counts and/or deaths data are available.


翻译:我们引入了将数据驱动的参数估计与变异数据同化相结合的最起码的爆发预测模型。通过侧重于非线性疾病传播的基本组成部分,并代表模型随机性简化为独立递增过程的领域内的数据,我们设计了只要求估计四个核心参数的方法。我们用COVID-19预测来说明这种新方法。结果包括美国及其所有50个州、哥伦比亚特区和波多黎各的病例数和死亡预测。这种方法是计算效率高的,不是针对疾病或地点的。因此,只要有病例数和/或死亡数据,它可以适用于其他疾病爆发或其他国家。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【硬核书】群论,Group Theory,135页pdf
专知会员服务
125+阅读 · 2020年6月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
6+阅读 · 2019年11月14日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【硬核书】群论,Group Theory,135页pdf
专知会员服务
125+阅读 · 2020年6月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员