This paper describes the calculation of the stationary scattering matrix and its derivatives for Euclidean waveguides. This is an adaptation and extension to a procedure developed by Levitin and Strohmaier which was used to compute the stationary scattering matrix \cite{alexnew}. On Euclidean waveguides, the scattering matrix can be meromorphically continued from the complex plane to a Riemann surface with a countably infinite number of sheets. We describe in detail how we have dealt with this. In addition, our algorithm is also able to calculate arbitrarily high derivatives. In the final section, we will present the results of some numerical calculations obtained using this method.


翻译:本文描述固定散射矩阵的计算及其在欧几里得波导的衍生物。 这是对利维廷和斯特罗哈马耶开发的程序的调整和扩展, 用于计算固定散射矩阵 \ cite{alexnew} 。 在欧几里德波导 上, 散射矩阵可以从复杂的平面到里曼表面, 以可计算到无限的平面。 我们详细描述我们是如何处理这个问题的。 此外, 我们的算法还可以计算任意高的衍生物。 在最后一节, 我们将介绍使用这种方法得出的一些数字计算结果 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年12月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
0+阅读 · 2021年3月23日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年12月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员