Machine learning models of materials$^{1-5}$ accelerate discovery compared to ab initio methods: deep learning models now reproduce density functional theory (DFT)-calculated results at one hundred thousandths of the cost of DFT$^{6}$. To provide guidance in experimental materials synthesis, these need to be coupled with an accurate yet effective search algorithm and training data consistent with experimental observations. Here we report an evolutionary algorithm powered search which uses machine-learned surrogate models trained on high-throughput hybrid functional DFT data benchmarked against experimental bandgaps: Deep Adaptive Regressive Weighted Intelligent Network (DARWIN). The strategy enables efficient search over the materials space of ~10$^8$ ternaries and 10$^{11}$ quaternaries$^{7}$ for candidates with target properties. It provides interpretable design rules, such as our finding that the difference in the electronegativity between the halide and B-site cation being a strong predictor of ternary structural stability. As an example, when we seek UV emission, DARWIN predicts K$_2$CuX$_3$ (X = Cl, Br) as a promising materials family, based on its electronegativity difference. We synthesized and found these materials to be stable, direct bandgap UV emitters. The approach also allows knowledge distillation for use by humans.
翻译:与初始方法相比,材料的机器学习模型=1-5美元加速发现;深学习模型现在复制密度功能理论(DFT)的计算结果,以10万分之一的成本复制密度功能理论(DFT)的计算结果。为了在实验材料合成方面提供指导,这些需要与精确而有效的搜索算法和培训数据相配合,与实验观测相一致。这里我们报告了一种进化算法的搜索方法,它使用在高通量混合功能DFT数据基础上根据实验带宽测量点基准而培训的机器-学习代谢模型:深调再侵入智能网络(DARWIN)现在复制密度功能理论(DFT)计算结果,以10万分之一的成本复制密度功能理论(DFT)的计算结果。为了对具有目标属性的候选人来说,这些实验材料的收集空间需要精确而有效的搜索算法和训练数据。我们发现,卤化和BSitecretainal 方法之间的电离子值是强大的预测。例如,当我们寻求UV排放时,DARWIN 值也是以稳定的材料为基础,我们找到了具有前景的CIBIls。