Machine learning on graphs has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To solve this critical challenge, automated machine learning (AutoML) on graphs which combines the strength of graph machine learning and AutoML together, is gaining attentions from the research community. Therefore, we comprehensively survey AutoML on graphs in this paper, primarily focusing on hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We further overview libraries related to automated graph machine learning and in depth discuss AutoGL, the first dedicated open-source library for AutoML on graphs. In the end, we share our insights on future research directions for automated graph machine learning. To the best of our knowledge, this paper is the first systematic and comprehensive review of automated machine learning on graphs.


翻译:无论是学术还是工业界,都对图纸上的机器学习进行了广泛研究,然而,随着图纸学习潮的文献文献和大量新兴的方法和技术,为不同图表相关任务手工设计最佳机器学习算法变得越来越困难。要解决这一重大挑战,在将图纸机学习强度和自动ML相结合的图表上自动机学习(自动ML)正在引起研究界的注意。因此,我们全面调查本文中的图纸上的自动ML,主要侧重于超参数优化(HPO)和神经结构搜索(NAS),用于图纸机学习。我们进一步浏览与自动图形机器学习有关的图书馆,并深入讨论AutoGL,这是第一个专门用于图纸上自动ML的开源图书馆。归根结,我们分享关于自动图形机学习未来研究方向的见解。据我们所知,本文是首次系统、全面地审查图纸上自动机器学习的自动化机器。

2
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
专知会员服务
116+阅读 · 2019年12月24日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
专知会员服务
116+阅读 · 2019年12月24日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
14+阅读 · 2020年10月26日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
5+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员